An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90.
نویسندگان
چکیده
Members of the postsynaptic density-95 (PSD-95)/SAP90 family of membrane-associated guanylate kinase (MAGUK) proteins function as multimodular scaffolds that organize protein-signaling complexes at neuronal synapses. MAGUK proteins contain PDZ, Src homology 3 (SH3), and guanylate kinase (GK)-like domains, all of which can function as sites for specific protein-protein interactions. We report here a direct protein-protein interaction between the SH3 domain and the GK region in the PSD-95 family of MAGUKs. The SH3 domain of the PSD-95 family appears to have an atypical binding specificity, because the classical SH3 binding (-P-X-X-P-) motif is absent from the GK domain. Although SH3-GK binding can occur in either an intramolecular or intermolecular manner, the intramolecular mode is preferred, possibly because of additional tertiary interactions available when the SH3 and GK domains are adjacent in the same polypeptide. Mutations disrupting the intramolecular SH3-GK interaction do not interfere with PSD-95 association with the K(+) channel Kv1.4 or with the GK domain-binding protein GKAP. The same mutations, however, inhibit the clustering of Kv1.4 by PSD-95, suggesting that the intramolecular SH3-GK interaction may modulate the clustering activity of PSD-95.
منابع مشابه
GKAP, a Novel Synaptic Protein That Interacts with the Guanylate Kinase-like Domain of the PSD-95/SAP90 Family of Channel Clustering Molecules
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the ...
متن کاملPostsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms.
Members of the postsynaptic density-95 (PSD95)/synapse-associated protein-90 (SAP90) family of scaffolding proteins contain a common set of modular protein interaction motifs including PDZ (postsynaptic density-95/Discs large/zona occludens-1), Src homology 3, and guanylate kinase domains, which regulate signaling and plasticity at excitatory synapses. We report that N-terminal alternative spli...
متن کاملSynamon, a novel neuronal protein interacting with synapse-associated protein 90/postsynaptic density-95-associated protein.
Guanylate kinase-associated protein (GKAP)/SAP90/PSD-95-associated protein (SAPAP)/DLG-associated protein (DAP) is a protein of the postsynaptic density (PSD), and binds to the guanylate kinase domain of PSD-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule. GKAP/SAPAP/DAP recruits PSD-95/SAP90 and its interacting protein, brain-enriched guanylate kinase-interacting prote...
متن کاملnArgBP2, a novel neural member of ponsin/ArgBP2/vinexin family that interacts with synapse-associated protein 90/postsynaptic density-95-associated protein (SAPAP).
Postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are synaptic membrane-associated guanylate kinases. Both the proteins interact with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/Dlg-associated protein). SAPAP is a protein highly enriched in the PSD fraction and may link PSD-95/SAP90 and S-SCA...
متن کاملMAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein.
Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 10 شماره
صفحات -
تاریخ انتشار 2000